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Topological superfluids are recently discovered quantum matter that hosts topologically protected gapless
edge states known as Majorana fermions—exotic quantum particles that act as their own antiparticles and
obey non-Abelian statistics. Their realizations are believed to lie at the heart of future technologies such as
fault-tolerant quantum computation. To date, the most efficient scheme to create topological superfluids and
Majorana fermions is based on the Sau-Lutchyn-Tewari-Das Sarma model with a Rashba-type spin-orbit coupling
on the x-y plane and a large out-of-plane (perpendicular) Zeeman field along the z direction. Here we propose
an alternative setup, where the topological superfluid phase is driven by applying an in-plane Zeeman field. This
scheme offers a number of different features, notably Cooper pairings at finite center-of-mass momentum (i.e.,
Fulde-Ferrell pairing) and gapless excitations in the bulk. As a result, gapless topological quantum matter with an
inhomogeneous pairing order parameter appears. It features unidirectional Majorana surface states at boundaries,
which propagate in the same direction and connect two Weyl nodes in the bulk. We demonstrate the emergence of
such exotic topological matter and the associated Majorana fermions in spin-orbit coupled atomic Fermi gases,
and we determine its parameter space. The implementation of our scheme in semiconductor/superconductor
heterostructures is briefly discussed.
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I. INTRODUCTION

The possibility of realizing topological superfluids and
manipulating Majorana fermions in solid-state and ultracold
atomic systems is currently a topic of great theoretical and
experimental interest [1,2], due to their fundamental interest
and potential applications in fault-tolerant topological quan-
tum computation [3]. Roughly, Majorana fermions constitute
“half” of an ordinary Dirac fermion, in the sense that two
real Majorana fermions γ1 and γ2—which can be separated in
arbitrary distance—mathematically define a complex fermion
operator c = γ1 + iγ2 [4]. The exchange statistics of Majorana
fermions is exotic. Unlike conventional bosons and fermions,
braiding Majorana fermions around one another in a 2N -
dimensional Hilbert space (spanned by 2N well-separated
Majorana fermions) produces non-Abelian unitary transfor-
mations in the Hilbert space. Quantum information can then
be nonlocally encoded in the Hilbert space by such braiding
operators and be immune to decoherence, which is ideal for
the purpose of quantum computation [3].

At present, a number of experimental settings have been
suggested for hosting Majorana fermions under appropriate
conditions, including chiral p-wave superconductors [5],
fractional quantum Hall systems at filling ν = 5/2 [6], and
topological insulators or semiconductor nanowires in prox-
imity to an s-wave superconductor [7–9]. The latest setting,
which seems to be the most practical setup, is described
by the Sau-Lutchyn-Tewari-Das Sarma (SLTD) model [8].
The key idea of this mechanism is that the Fermi surfaces
are spin-split by a Rashba spin-orbit coupling in the x-y
plane and a perpendicular out-of-plane Zeeman field along
the z direction. If the number of particles is tuned to make
the inner Fermi surface disappear, superconductivity will
only be induced by pairing on the outer Fermi surface,
which is p-wave in nature [10,11], and therefore it becomes

topologically nontrivial. Following this promising theoretical
model, exciting experimental progress for the observation of
Majorana fermions has been made very recently [12–14],
although unambiguous confirmation for their existence still
remains elusive.

The SLTD mechanism uses an out-of-plane Zeeman field
to split the Fermi surfaces [8]. It is interesting that such
a splitting can also be achieved by applying a large in-
planeZeeman field in combination with spin-orbit coupling,
as illustrated in Fig. 1. Furthermore, the in-plane field together
with spin-orbit coupling is known to introduce an asymmetry
in the single-particle dispersion [15,16], and consequently to
induce Cooper pairs with nonzero center-of-mass momentum
[17–33] and hence realize the so-called spatially inhomoge-
neous Fulde-Ferrell (FF) pairing scenario [34]. It is therefore of
interest to ask whether a topological phase transition can also
be driven by an in-plane Zeeman field only? If the answer is
yes, then we must be able to observe an exotic inhomogeneous
topological FF superfluid that supports Majorana fermions.
The understanding of such a topological state of matter may
greatly enrich our knowledge about topological superfluids.

In this work, we examine the mechanism by using an
ultracold atomic setting of a three-dimensional (3D) spin-
orbit-coupled atomic Fermi gas subject to an in-plane Zeeman
field. By increasing the field strength above a threshold, we
observe the change of the topology of the Fermi surfaces
that triggers a topological phase transition. The resulting
inhomogeneous topological FF superfluid is gapless in the bulk
with nodal points forming closed surfaces in momentum space,
while in real space it hosts unidirectional Majorana surface
states that propagate in the same direction at boundary. These
unique features are absent in standard topological superfluids
known so far, such as the p-wave superconductors or the
SLTD-type superconductors, both of which are gapped in
the bulk and support counterpropagating Majorana modes at
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FIG. 1. (Color online) Formation of an effective p-wave energy
band. The energy band of the system splits into two by spin-orbit
coupling. A large in-plane Zeeman field along the x direction strongly
tilts the energy dispersion. When the Fermi energy lies below the
upper band, atoms occupy the lower band only and form an effective
“spinless” system, in which the composite particle consists of both
spin-up and spin-down ingredients (shown by circles with arrows),
and they interact with each other via an effective p-wave interaction.

surfaces. We find that the phase space for the proposed gapless
topological FF superfluid is significant, implying that it could
be easily realized in current ultracold atomic experiments
due to the unprecedented tunability of synthetic spin-orbit
coupling, the Zeeman field, and interatomic interaction in
a cold-atom laboratory [35–38]. We also discuss briefly the
potential implementation of our proposal in solid-state setups.

We note that the possibility of using an in-plane Zeeman
field to induce a topological transition has been explored earlier
by Alicea [39] as a variation of the SLTD mechanism. The
key idea of that work is to use both Dresselhaus and Rashba
spin-orbit couplings, which in a certain limit recovers the
SLTD model. The FF pairing induced by the in-plane Zeeman
field is not discussed. The gapless superfluid is clearly regarded
as topologically trivial. On the other hand, the system that we
shall investigate below has been considered in earlier works
[25,26]. However, in these works the possibility of topological
superfluidity is not realized, and the associated nontrivial
unidirectional Majorana edge states are not discussed.

II. MODEL HAMILTONIAN AND MEAN-FIELD THEORY

For concreteness, we focus on a 3D spin-orbit-coupled
two-component Fermi gas with an isotropic spin-orbit cou-
pling VSO(k̂) = λ(k̂xσx + k̂yσy + k̂zσz) subject to an in-plane
Zeeman field hσx [25,26,40–42]. This is probably the simplest
system to demonstrate the effect of an in-plane Zeeman
field, because, with the spin-orbit coupling expanding in all
three directions, all the Zeeman fields should be classified as
in-plane. Thus, we avoid any possible complications due to
the existence of an out-of-plane Zeeman field. In cold-atom

experiments, the creation of a 3D isotropic spin-orbit coupling
or a 2D Rashba spin-orbit coupling may be achieved by
a sequence of pulsed inhomogeneous magnetic fields that
imprint suitable phase gradients on the atoms, with similar
experimental difficulty [41,42].

The above-mentioned Fermi gas with isotropic spin-orbit
coupling can be described by the model Hamiltonian,

H =
∫

dr

[∑
σσ ′

ψ†
σ (r) H

σσ ′

0 ψσ ′ (r) + Vint

]
, (1)

where ψ†
σ (r) (ψσ ) is the field operator for creating (annihi-

lating) an atom with pseudospin state σ ∈ (↑,↓) at position r,
H0 = −�

2∇2/(2m) − μ + VSO(k̂) + hσx is the single-particle
Hamiltonian with the atomic mass m and chemical potential
μ, k̂i=(x,y,z) = −i∂i is the momentum operator, and σx,y,z are
the Pauli matrices. V int = U0ψ

†
↑(r)ψ†

↓(r)ψ↓(r)ψ↑(r) describes
a pairwise attractive contact interaction of strength U0 < 0,
where U−1

0 = m/(4π�
2as) − V −1 ∑

k m/(�2k2) can be ex-
pressed in terms of the s-wave scattering length as . At the
mean-field level, the model Hamiltonian can be solved by tak-
ing an order parameter 	(r) = −U0〈ψ↓(r)ψ↑(r)〉 and lineariz-
ing the interaction Hamiltonian Vint 	 −[	(r)ψ†

↑(r)ψ†
↓(r) +

H.c.] − |	(r)|2 /U0.
In the presence of an in-plane Zeeman field hσx , it is

now widely understood that Cooper pairs acquire a finite
center-of-mass momentum Q = qex along the x direction,
i.e., 	(r) = 	eiqx [15,22–25]. This helical phase was first
proposed in the context of noncentrosymmetric supercon-
ductors [17–21,43]. By using the Nambu spinor 
(r) ≡
[ψ↑e+iqx/2,ψ↓e+iqx/2,ψ

†
↑e−iqx/2,ψ

†
↓e−iqx/2]T to gauge out the

momentum-related phase in the order parameter, the mean-
field model Hamiltonian can be solved by diagonalizing the
following Bogoliubov–de Gennes (BdG) Hamiltonian:

HBdG(k̂) ≡
[
H0

(Q
2 + k̂

) −i	σy

i	σy −H ∗
0

(Q
2 − k̂

)] , (2)

i.e., HBdG
ν
kη(r) = Eην(k)
ν

kη(r), which gives rise to the
wave function of Bogoliubov quasiparticles, 
ν

kη(r) =
1/

√
V eik·r[uν

η↑,uν
η↓,vν

η↑,vν
η↓]T , and the energy Eην(k). We

obtain four quasiparticle energy dispersions, indexed by ν ∈
(+,−) for the particle (+) or hole (−) branch, and η ∈(1,2) for
the upper (1) or lower (2) band split by the spin-orbit coupling
and Zeeman field. We derive the gap and number equations
from the resulting mean-field thermodynamic potential (see
Appendix A) and solve them self-consistently to obtain 	,
q, and μ, from which we determine the phase diagram at
zero temperature. In our numerical calculations, using the
number density n we have set the Fermi wave vector kF =
(3π2n)1/3 and Fermi energy EF = �

2k2
F /(2m) as the units

for wave vector and energy, respectively. Unless specifically
noted, we shall focus on the weak-coupling case with a
dimensionless interaction parameter 1/(kF as) = −0.5 and at
zero temperature T = 0, for which our mean-field treatment
could be well justified.
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FIG. 2. (Color online) Zero-temperature phase diagram of the FF
superfluid at the interaction parameter 1/(kF as) = −0.5. With an
increasing in-plane Zeeman field, the Fermi cloud changes from
a gapped FF superfluid to a gapless FF superfluid, and finally it
turns into a gapless topological superfluid. The strength of spin-orbit
coupling is in units of EF /kF .

III. RESULTS AND DISCUSSIONS

A. Zero-temperature phase diagram

In Fig. 2, we report the zero-temperature phase diagram.
It is readily seen from the phase diagram that an in-plane
Zeeman field will drive the Fermi system from a gapped FF

superfluid to a gapless phase (labeled as “nodal FF”) [25,26].
Remarkably, at a sufficiently large value it will also lead to a
gapless topologically nontrivial state (“topological nodal FF”)
[32,33]. The evolution of the energy spectrum at a typical spin-
orbit coupling strength λ = EF /kF as a result of the increasing
in-plane Zeeman field is presented in Fig. 3.

Physically, the transition to a gapless phase can be well
characterized by a global energy gap Eg = min E2+(k), which
is half of the energy difference between the minimum energy of
the particle branch and the maximum of the hole branch due
to the particle-hole symmetry E2+(k) = −E2−(−k). Hence,
Eg � 0 and Eg > 0 characterize a gapless and gapped state,
respectively. The topological phase transition, on the contrary,
is related to the change of the topology of the Fermi surfaces.
It is well known that such a change must be accompanied
by the closing and reopening of an energy gap at some
specific points in momentum space [1,2]. In our continuum
case of a homogeneous Fermi gas, this occurs precisely
at the origin k = 0 [see Fig. 3(b)]. Therefore, naively the
topological transition can be determined from the condition
E2+(k = 0) = 0, or more explicitly [30,32],

hc2 =
√(

μ − �2q2

8m

)2

+ 	2 − λq

2
. (3)

In the absence of an FF pairing momentum (q = 0), the above
condition reduces to the well-known criterion hc =

√
μ2 + 	2

FIG. 3. (Color online) The evolution of the energy gap and of the topology of the Fermi surfaces at λ = EF /kF with increasing in-plane
Zeeman field. (a) The global energy gap Eg = min E2+(k) (red dashed line), the energy gap at k = 0 (black solid line), and the minimum
energy of the surface states (green solid circles) when an open boundary is imposed on the y-z plane. (b) The energy dispersion E2±(ky) at

kx = 0 and kz = 0. (c), (d), and (e) The 3D full plot of the energy dispersion E2±(kx,k⊥ =
√

k2
y + k2

z ) at hc1 	 0.3EF (c), hc2 	 0.327EF (d),

and h = 0.4EF (e). The wave vector and the energy are in units of kF and EF , respectively.
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for the appearance of an SLTD topological superfluid when an
out-of-plane Zeeman field is applied [8,9]. It is interesting that
the gapless transition always occurs before the topological
transition, as a result of Eg � E2+(k = 0). Thus, bulk-
gappedtopological FF superfluids, if they exist, must appear at
a very high in-plane Zeeman field. As a superfluid analog of
strong 3D topological insulators [1,2], they are anticipated
to have the unique feature of a single Dirac cone for the
energy dispersion of the Majorana edge states. Unfortunately,
in the parameter space that we considered, we do not find their
existence.

At the coupling strength λ = EF /kF , the gapless transition
and the topological transition occur at hc1 	 0.3EF and
hc2 	 0.327EF , respectively, as can be seen from Fig. 3(a),
where Eg (red dashed line) and E2+(k = 0) (black solid
line) become zero as the in-plane Zeeman field increases.
When h > hc1, nodal points that satisfy E2±(k) = 0 develop
and form two closed surfaces in momentum space [25,26].
When the in-plane field increases further, passing through the
threshold hc2 for the topological transition [see Fig. 3(d)], the
energy dispersions of the particle and hole branches touch at
two specific points (±kW ,0,0), as shown in Fig. 3(e). Around
these points, the dispersion of Bogoliubov quasiparticles in
the bulk acquires a linear structure and they thereby form
a Dirac cone. This is precisely the energy dispersion for
massless Weyl fermions [44–46]. In this sense, the gapless
topological FF superfluid predicted in this work provides an
avenue for the observation of Weyl fermions around the Weyl
nodes (±kW ,0,0). Indeed, Weyl fermions have recently been
discussed in the context of 3D gapped topological superfluids
[47–49].

In our case, the appearance of the Weyl nodes and of the
topological order is closely related. Due to the asymmetry in
the kx axis, only one of the Weyl nodes is occupied. Thus,
we may characterize the topological order of the gapless FF
superfluid by using the topological invariant of Weyl fermions
[2,50]:

NW =
∫

d3k
24π2

εμνρTr[Q†
k∂μQkQ

†
k∂νQkQ

†
k∂ρQk], (4)

where Qk is the unitary matrix determined by the BdG Hamil-
tonian, μ,ν,ρ = (kx,ky,kz), and the domain of the integration
includes the isolated, occupied at zero temperature Weyl node.
The gapless topological FF superfluid is characterized by a
nonzero topological invariant NW = ±1 [47,49], where the
sign depends on the position of the Weyl nodes (i.e., kx = +kW

or kx = −kW ). We note that the Weyl nodes always come in
pairs.

B. Majorana edge states

To further demonstrate the topological nature of the gapless
FF superfluid, we calculate the energy dispersion in the
presence of an open boundary by imposing cylindrical hard-
wall confinement perpendicular to the y-z plane with radius L

and with the x axis being the symmetry axis (see Appendix B).
There is a pair of zero-energy Majorana fermion states on the
boundary of r =

√
y2 + z2 = L, which is the direct signature

of a topologically nontrivial state. The existence of Majorana
fermions is reported in Fig. 3(a) by green solid circles. They
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FIG. 4. (Color online) Majorana surface states arising from the
hard-wall confinement perpendicular to the y-z plane. (a) and (b)
The energy spectrum E

(m)
kx

as a function of kx for m = 0 and 10,
respectively. (c) The wave function of the zero-energy Majorana
fermions for m = 0, satisfying the symmetry uσ (r) = eiϑv∗

σ (r), where
ϑ is a constant phase factor and σ = ↑ , ↓. (d) The wave function of
the zero-energy surface state for m = 10. In numerical calculations,
we have set the radius of the confinement L = 200k−1

F . Other
parameters are λ = EF /kF and h = 0.4EF . The wave function is
normalized to unity:

∫ L

0 2πr dr
∑

σ [|uσ (r)|2 + |vσ (r)|2] = 1.

immediately appear after the change in the topology of the
Fermi surfaces.

We now discuss in more detail the Majorana surface states,
whose dispersion is shown in Fig. 4. Because the boundary
we impose has cylindrical symmetry in the y-z plane and
translational symmetry along the x direction, the quasiparticle
wave function takes the following form:


ν
kxη

= eikxxeimφ
[
uν

η↑(r),uν
η↓(r)eiφ,vν

η↑(r)eiφ,vν
η↓(r)

]T
, (5)

where (x,r,φ) form the cylindrical coordinates. States with
different orbital angular momentum quantum number m and
linear momentum kx are decoupled; see Appendix B for
more details. In Figs. 4(a) and 4(b), we plot the energy
spectrum along the kx axis for m = 0 and 10, respectively.
The Majorana zero-energy mode can be identified by the
energy crossing of the surface state contribution, at which
points quasiparticle wave functions become localized near
the boundary r = L, as shown in Figs. 4(c) and 4(d). The
surface states smoothly connect to the Weyl nodes located
approximately at kW 	 0.4kF in the bulk. As |m| increases,
the localization of the zero-energy surface modes deteriorates
due to their hybridization with the bulk modes, and the desired
symmetry uσ (r) = eiϑv∗

σ (r) (σ =↑ , ↓) for Majorana mode
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[51] is violated [see Fig. 4(d)]. One can prove that, as a
result of particle-hole symmetry of the BdG equation, when
m → −m − 1, and kx → −kx , we have Eην → −Eην . Hence
for every zero-energy state at given m and kx , there is a
corresponding zero-energy state at −m − 1 and −kx , which
describes the same physical state. As a result, it is easy to see
from Figs. 4(a) and 4(b) that for arbitrary azimuthal angular
momentum m, the Majorana surface states have nearly the
same unidirectional velocity v(kx) = ∂E

(m)
kx

/∂kx > 0. As there
are no net atomic currents at equilibrium, the current carried by
these copropagating surface states must be compensated by the
current induced by some extra counterpropagating modes in
the bulk. This is only possible when the system is gapless in the
bulk, consistent with the gapless nature of our topological FF
superfluid. The unidirectional surface states discussed in our
work are therefore a unique feature of the gapless topological
FF superfluid.

We may also consider imposing hard-wall confinement
along a specific direction, for example adding two walls per-
pendicular to the y axis at y = 0,L. In this case, unidirectional
Majorana surface states propagate in the same direction on
opposite boundaries at y = 0 and y = L, respectively. For
detailed discussions, we refer to Appendix C.

It is worth noting that the 3D gapless topological FF
superfluid cannot be viewed as a stack of 2D topological
superfluids along a specific direction (i.e., the x axis), unlike the
standard 3D topological superfluids known so far. For the latter,
the Majorana surface states of the 3D system can be understood
as the edge states of the 2D system on the surfaces, which are
parallel to the x axis and therefore have a flat dispersion that
does not depend on kx [48]. This is analogous to the trivial or
weak 3D topological insulators [1,2]. In our case, due to the
existence of spin-orbit coupling in all three spatial directions,
the dispersion of the Majorana surface states is no longer flat.
In this respect, the gapless topological FF superfluid might be
better regarded as the superfluid analog of a strong topological
insulator [1,2], although the surface states may not have a
Dirac-cone-like dispersion due to the gapless bulk.

C. Experimental accessibility

Due to their significant parameter space in the phase
diagram, our proposed gapless topological FF superfluids
could be easily detected in current cold-atom experiments,
where the isotropic or Rashba-type spin-orbit coupling can be
engineered by using Raman lasers [40] or a sequence of pulsed
inhomogeneous magnetic fields [41]. The unidirectional Ma-
jorana surface modes, as unique experimental evidence of the
topological superfluid, could in principle be directly visible
as arcs in momentum space at the Fermi surfaces in the
momentum-resolved radiofrequency spectroscopy [51].

To give some typical numbers for a possible cold-atom
experiment, we consider a strongly interacting Fermi cloud
of N = 2 × 105 40K atoms confined in a harmonic trap with
a geometric mean trapping frequency ω 	 2π × 130 Hz
[38]. The Fermi energy or Fermi temperature is about
TF = (3N )1/3

�ω/kB 	 500 nK. Experimentally, the coupling
strength of the isotropic spin-orbit coupling and the Zeeman
field may be independently tuned at will [40–42], according
to the reported experiments with a Raman scheme for spin-

orbit coupling [36–38]. Thus, the parameter space of the
gapless topological phase could be easily reached. Actually,
the major experimental difficulty is the realization of Fermi
superfluidity in the presence of spin-orbit coupling. For the
gapless topological phase shown in Fig. 2 at the interaction
strength 1/(kF as) = −0.5, we estimate that the superfluid
transition temperature would be at about Tc 	 0.1TF 	 50 nK.
This temperature is known to be accessible in the absence of
spin-orbit coupling [52].

In solid-state systems, a promising candidate for realizing
the gapless topological FF superfluid is to use a quantum
well with large Rashba and Dresselhaus spin-orbit couplings
(i.e., hole-doped InSb) in proximity to a conventional s-
wave superconductor, where the in-plane Zeeman field in the
quantum-well layer can be controlled to minimize the orbital
effect [39]. Other candidates include noncentrosymmetric
superconductors such as CePt3Si and Li2PdxP t3−xB [53] in the
presence of a magnetic field on the plane of Rashba spin-orbit
coupling.

IV. CONCLUSIONS

In summary, we have proposed a mechanism to create
topologically nontrivial states by using an in-plane Zeeman
field only. Interesting Gapless topological superfluids with
an inhomogeneous Fulde-Ferrell pairing order parameter
can be realized using three-dimensional spin-orbit-coupled
s-wave superfluids, where the finite momentum pairing and
topological order are both driven by the in-plane Zeeman
field. They feature unidirectional surface modes and a pair of
zero-energy Majorana fermions at the edges, which are quite
different from the standard gapped topological superfluids
that are known to date. These features will greatly enrich
our understanding of topological quantum matter, in both
solid-state and cold-atom systems.

We finally note that although the gapless topological
superfluid has a gapless spectrum in the bulk, it shares the same
stability as the standard gapped topological superfluid subject
to disordered potentials. This is because, in momentum space,
Majorana surface states—as the manifestation of topological
order—are protected by the local energy gap at k = 0, while
in real space, the overlap between the zero-energy Majorana
modes and the gapless bulk states is exponentially small.
Therefore, we conclude that the predicted gapless topological
superfluid should have potential applications similar to any
gapped topological superfluid, in topological quantum infor-
mation and quantum computation.
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APPENDIX A: MEAN-FIELD BOGOLIUBOV–DE
GENNES EQUATIONS

The details of our theoretical framework have been
presented in previous work [25,26]. Here we give
a brief summary. Taking the mean-field approximation
for the pairing interaction term, the model Hamilto-
nian of the Fermi system can be rewritten in a com-
pact form, H = (1/2)

∫
dr 
†(r)HBdG(k̂)
(r) − V 	2/U0 +∑

k(ξk+Q/2 + ξk−Q/2)/2, where the explicit form of HBdG(k̂)
in Eq. (2) is given by⎡
⎢⎢⎣

ξ̂k+ + λk̂z �
†
k+ 0 −	

�k+ ξ̂k+ − λk̂z 	 0
0 	 −ξ̂k− + λk̂z �k−

−	 0 �
†
k− −ξ̂k− − λk̂z

⎤
⎥⎥⎦
(A1)

with ξ̂k± ≡ �
2(k̂ ± Q/2)2/(2m) − μ and �k± ≡ λ(k̂x ±

q/2 + ik̂y) ± h. For a homogeneous Fermi gas with open
boundary condition, the BdG Hamiltonian can be diagonalized
by replacing the momentum operators k̂i (i = x,y,z) by the
corresponding c numbers ki . Thus, we obtain the energy spec-
trum of Bogoliubov quasiparticles Eην(k), where ν ∈ (+,−)
denotes the particle or hole branch and η ∈(1,2) stands for the
upper or lower band. The mean-field thermodynamic potential
�mf at temperature T can be written down straightforwardly,

�mf

V
= 1

2V

∑
k

⎡
⎣ξk+Q/2 + ξk−Q/2 −

∑
η=1,2

Eη+(k)

⎤
⎦

−	2

U0
− kBT

V

∑
kη=1,2

ln[1 + e−Eη+(k)/kBT ], (A2)

where the last term is the standard expression of thermody-
namic potential for noninteracting Bogoliubov quasiparticles.
Due to the inherent particle-hole symmetry in the Nambu
spinor representation, the summation over the quasiparticle
energy has been restricted to the particle branch to avoid double
counting. For a given set of parameters (i.e., temperature T , s-
wave scattering length as , etc.), different mean-field phases can
be determined using the self-consistent stationary conditions,
∂�mf/∂	 = 0, ∂�mf/∂q = 0, as well as the conservation of
the total atom number, n = −(1/V )∂�/∂μ, where n is the
number density. At a given temperature, the ground state has
the lowest free energy F = � + μN . For simplicity, we only
report the results at zero temperature. For a more quantitative
description, in future studies strong pair fluctuations beyond
mean field may be taken into account by using many-body
T-matrix theories [54–56].

APPENDIX B: MAJORANA SURFACE STATES WITH
A CYLINDRICAL HARD-WALL CONFINEMENT

To determine the Majorana surface states in the topolog-
ically nontrivial phase, we impose a cylindrical hard-wall
potential, for example perpendicular to the y-z plane, so that
any single-particle wave function must vanish identically at
the boundary r = L. We assume that the radius is sufficiently
large so that we can use the solution of a uniform pairing gap.

Accordingly, in the BdG Hamiltonian Eq. (A1), we replace
the momentum operator ky and kz with its corresponding
derivatives in cylindrical coordinates, where the longitudinal
axis is chosen along the x direction. It can be diagonalized by
using the following ansatz for the Bogoliubov wave functions:

⎡
⎢⎣

u↑(r)
u↓(r)
v↑(r)
v↓(r)

⎤
⎥⎦ = eimθ

√
2π

Nmax∑
n=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Jm(κ (m)
n r/L)√
N (m)

n

un↑
Jm+1(κ (m+1)

n r/L)eiθ√
N (m+1)

n

un↓
Jm+1(κ (m+1)

n r/L)eiθ√
N (m+1)

n

vn↑
Jm(κ (m)

n r/L)√
N (m)

n

vn↓

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

eikxx, (B1)

where κ (m)
n is the nth positive root of the Bessel function

of the first kind Jm(ρ) with m � 0. For states with m <

0, we have instead J−m(ρ) = (−1)mJm(ρ). The orthogo-
nal condition is given by

∫ L

0 Jm(κ (m)
n r/L)Jm(κ (m)

l r/L)r dr =
0, where integer n �= l and normalization reads N (m)

n =∫ L

0 Jm(κ (m)
n r/L)Jm(κ (m)

n r/L)r dr = 1
2L2[Jm+1(κ (m)

n )]2. Insert-
ing this ansatz into the BdG equation, we convert the BdG
Hamiltonian into a 4Nmax by 4Nmax Hermitian matrix,

H(m)
11nun↑ − iλ

Nmax∑
l=1

W (m)
ln ul↓ − 	vn↓ = E

(m)
kx

un↑, (B2)

iλ

Nmax∑
l=1

W (m)
nl ul↑ + H(m)

22nun↓ + 	vn↑ = E
(m)
kx

un↓, (B3)

	un↓ + H(m)
33nvn↑ + iλ

Nmax∑
l=1

W (m)
nl vl↓ = E

(m)
kx

vn↑, (B4)

− 	un↑ − iλ

Nmax∑
l=1

W (m)
ln vl↑ + H(m)

44nvn↓ = E
(m)
kx

vn↓, (B5)

where all the matrix elements have been analytically worked
out (not shown here). The diagonalization directly gives rise
to the energies and wave functions of the Majorana surface
states.

APPENDIX C: MAJORANA SURFACE STATES WITH A
HARD-WALL CONFINEMENT ALONG THE y DIRECTION

Here we discuss the Majorana surface states with a
hard-wall potential along a specific direction, say along the
y direction. Any single-particle wave function must vanish
identically at the boundary y = 0 or y = L. We assume that
the length L is sufficiently large, so we use the solution of
a uniform pairing gap. Accordingly, in the BdG Hamiltonian
Eq. (A1), we replace the momentum operator ky with −i∂y .
It can be diagonalized by using the following ansatz for the
Bogoliubov wave functions:

uσ (y) =
Nmax∑
n=1

unσψn (y) , (C1)

vσ (y) =
Nmax∑
n=1

vnσψn (y) , (C2)
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FIG. 5. (Color online) Majorana surface states arising from the hard-wall confinement along the y direction. (a) The surface-state dispersion
forms two sheets that cross at the line kz = 0. (b) and (c) The full energy spectrum E2±(kx,kz) along the kz or kx axis, respectively. The surface
states at the two boundaries are highlighted by red solid circles and blue empty squares, respectively. (d) The wave function of the zero-energy
Majorana fermions at kx = 0 and kz = 0. In numerical calculations, we have set the length of the confinement L = 200k−1

F . Other parameters
are λ = EF /kF and h = 0.4EF as in Fig. 4. The wave function is normalized to unity:

∫ L

0 dy
∑

σ [|uσ (y)|2 + |vσ (y)|2] = 1.

where ψn (y) = √
2/L sin[nπy/L] is the eigenfunction of

the hard-wall potential with eigenvalue εn = �
2n2π2/(2mL2).

Inserting this ansatz into the BdG equation, we convert the
BdG Hamiltonian into a 4Nmax by 4Nmax symmetric matrix,
whose diagonalization leads directly to the energies and wave
functions of the Majorana surface states.

With this hard-wall confinement, the dispersion of Majo-
rana surface states is shown in Fig. 5. In momentum space,
kx and kz are still good quantum numbers, so we actually plot
min E2+(kx,kz) and max E2−(kx,kz). There are two sheets in
the energy dispersion [Fig. 5(a)], corresponding to the surface
states localized at the boundary y = 0 and y = L, respectively.
Remarkably, these two sheets cross at the line kz = 0,
indicating that along this line the two branches of surface states
are unidirectional, that is, propagating in the same direction
on opposite boundaries. This is highlighted in Fig. 5(b), from
which we also identify that the unidirectional Majorana surface
states smoothly connect the two Weyl nodes (±kW ,0,0) in

the bulk, where kW 	 0.4kF . Recall that at equilibrium there
are no net atomic currents. As in the cylindrically symmetric
case, the current due to these copropagating surface states on
opposite boundaries therefore must be compensated by the
current induced by some extra counterpropagating modes in
the bulk. This can only happen in systems with a gapless bulk.
We note that the unidirectional Majorana surface states only
occur along the line kz = 0. Actually, if we make a cut on
the two sheets along other directions, for example along the
line kx = 0, it is easy to see that the Majorana surface states
become counterpropagating [see Fig. 5(c) for the dispersion
as a function of kz], resembling the surface states in the
standard gapped topological superfluid. This follows the fact
that at kx = 0 our topological FF superfluid is actually gapped
in the bulk. By comparing the two limiting cases shown in
Figs. 5(b) and 5(c), it is clear that the unidirectional surface
states discussed in our work are a unique feature of gapless
topological FF superfluid.
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